Factoring!

Breaking expressions into parts
Opposite of Expanding

Let's start with HCF

What's an HCF??

Highest Common Factor
 Let's break each of these words down

Watch numbers dance

 An animation of prime factors into patterns (In maths we like patterns)

- What's the HCF of 20 and 8?
 - How do we get the HCF from the prime factors?

What does this have to do with Factoring?

Right now we're factoring expressions like 20x + 12

- What's the HCF of 20 and 12?
- So we'll take 4 common
- Then we have:
 - 0.20x + 12 = 4(5x + 3)
- And that's our factored expression!

Examples: We Do

- 15x + 5
- 8x + 20
- 16x + 10
- 6x + 18
- 33 + 110y

Examples: You Try

- 18x + 9
- 8 + 28q
- 20q + 25
- 18r + 9d

Can a pronumeral be a common factor?

- Yes!
- Just as if a pronumeral were a prime
- Example: $x^2 + 7x$ = x(x + 7)

Examples

$$2x^2 + 4$$

$$x^2 + 5x$$

$$9x^2 - 3x$$

$$10x^2 + 25x$$

$$6x^2 - 18$$

Extra: The Euclidean Algorithm!

- Let's say we have to find the HCF of two numbers a and b
- Divide the larger number (say, a), by the smaller (say, b)
- If the remainder (let's call it c) is 0, b is the HCF, we're done!
- Otherwise, we replace a with b and b with c and start again
 - ∘ i.e. we divide *b* by *c*
- If the remainder is 0, the last divisor is the HCF
- If the remainder is 1, a and b are coprime

Euclid's Division Algorithm Formula

Adding And Subtracting Algebraic Fractions

- How do we add and subtract normal fractions?
 - Step 1: Getting a common denominator
 - Find the lowest common multiple
- Same applies to algebraic fractions

Example 1

$$rac{5}{2a^2} + rac{c}{6ab}$$

$$LCM = 6a^2b$$

So our fraction becomes

$$=rac{5 imes3b}{6a^2b}+rac{c imes2a}{6a^2b} \ =rac{15b+2ac}{6a^2b}$$

Can we simplify any further?

Example 2

$$= \frac{3}{x+4} - \frac{5}{2x}$$

$$= \frac{3 \times 2x}{(x+4) \times 2x} - \frac{5 \times (x+4)}{2x \times (x+4)}$$

$$= \frac{6x}{2x(x+4)} - \frac{5x+20}{2x(x+4)}$$

$$= \frac{6x - (5x+20)}{2x(x+4)}$$

$$= \frac{6x - 5x - 20}{2x(x+4)}$$

$$= \frac{x-20}{2x(x+4)}$$

Example 3 (Your Turn)

$$\frac{3x+2}{2} - \frac{x-1}{4}$$

$$= \frac{(3x+2) \times 2}{2 \times 2} - \frac{x-1}{4}$$

$$= \frac{6x+4}{4} - \frac{x-1}{4}$$

$$= \frac{6x+4-(x-1)}{4}$$

$$= \frac{6x+4-x+1}{4}$$

$$= \frac{5x+5}{4}$$

$$= \frac{5(x+1)}{4}$$

Example 4 (You Try First)

$$\frac{1}{2x} + \frac{4}{x+2}$$

$$= \frac{1 \times (x+2)}{2x \times (x+2)} + \frac{4 \times 2x}{(x+2) \times 2x}$$

$$= \frac{x+2}{2x(x+2)} + \frac{8x}{2x(x+2)}$$

$$= \frac{x+2+8x}{2x(x+2)}$$

$$= \frac{9x+2}{2x(x+2)}$$